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Physiologically based pharmacokinetic (PBPK) models estimate 
the pharmacokinetic (PK) profile or exposure in “a target tis-
sue or organ after a drug dose by taking into account the rate 
of absorption into the body, distribution among target organs 
and tissues, metabolism, and excretion” (http://www.epa.gov/
opp00001/science/comptox-glossary.html#p). The develop-
ment of PBPK models can be traced back to 1937, when Teorell 
derived several formulas to describe drug concentrations over 
time in blood and tissues.1 Although his model was a rudi-
mentary one, its emphasis on drug distribution and concen-
tration as a function of time in tissues other than blood make 
this probably the first PBPK model. For several decades, efforts 
have been made to refine PBPK models that can be applied in 
drug development and the evaluation of environmental toxins 
(ref. 2 and the references therein). Over the past two decades, 
the advancements in computer science and the explosion of 
knowledge in biomedical sciences supported development of 
the highly sophisticated, population-based PBPK modeling and 
simulation tools that are now available.3–6

An important role of clinical pharmacologists is to identify 
optimal dosing regimens for individual patients. In order to 

achieve this, the effects of intrinsic (e.g., organ dysfunction, 
age, genetics) and extrinsic (e.g., drug–drug interactions) patient 
factors (Figure 1a) on drug exposure and response need to be 
evaluated during drug development.7 PBPK modeling and 
simulation can help predict the pharmacokinetics of drugs in 
humans, including the effect of intrinsic and extrinsic factors 
on ADME (absorption, distribution, metabolism, and excre-
tion). These predictions aid in the selection of optimal dosing 
regimens. Figure 1b illustrates components of a PBPK model, 
including drug-dependent and drug-independent system 
components. The system components are based on decades of 
knowledge of body fluid dynamics (e.g., secretion of gastric acid 
and bile, blood flow, urine flow), tissue size and composition, 
abundance and distribution of drug receptors, drug-metaboliz-
ing enzymes, and membrane transporters in various organ and 
tissue compartments. The drug-dependent component of the 
model enables the study of ADME processes and mechanisms of 
action at the cellular level by dividing the organs into tissue and 
intracellular spaces. Consequently, changes in the magnitude 
and time course of drug exposure and drug action in the tissue 
of interest can be investigated.
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Publications in the literature describe the use of PBPK mod-
eling in critical areas of clinical pharmacology, including pedi-
atrics,8–11 formulation effect,12,13 organ impairment,14,15 and 
drug–drug interactions.16–21 The dynamic models that incor-
porate interindividual variability of intrinsic factors can help 
determine optimal dosing regimens and sampling schemes at 
the time of designing clinical pharmacology studies.16,19,21–24

From July 2008 to June 2010, the Office of Clinical 
Pharmacology in the Center for Drug Evaluation and Research 
of the US Food and Drug Administration (FDA) used PBPK 
modeling and simulation while reviewing numerous submis-
sions to assist in several types of decisions relating to the need 
to conduct specific clinical pharmacology studies (both premar-
keting and postmarketing), the design of the studies, and the 
appropriate language in the labeling. In this report, we provide 
a summary of these submissions and their regulatory implica-
tions, and we present lessons learned from these reviews.

Results
Summary of PBPK modeling and simulations included in IND 
and NDA submissions
From July 2008 to June 2010, the FDA reviewed seven investi-
gational new drug (IND) and six new drug applications (NDA) 
submissions containing PBPK modeling and simulations con-
ducted by the sponsors. In addition, FDA reviewers conducted 
PBPK modeling and simulations to support clinical pharmacol-
ogy reviews of another four NDA submissions for which the 
sponsors did not use PBPK. As a comparison, in the 3 years 
before 2008, FDA received only two submissions containing 
PBPK modeling and simulations. Many of the PBPK modeling 

and simulation evaluations addressed questions relating to 
drug–drug interactions; others addressed pediatric dosing, the 
impact of hepatic impairment on drug exposure, and the impact 
of multiple factors on drug exposure (Table 1). A scheme of 
PBPK modeling and simulations can be generalized to include 
five basic steps, as outlined in Figure 2. In step 1, the drug’s 
clearance pathways are identified and quantified. In step 2, drug-
dependent parameters are incorporated into PBPK models. Step 
3 compares the predicted concentration–time profiles with those 
obtained from available in vivo human studies. Step 4 consists 
of refining the model on the basis of the results from step 3. 
Finally, in step 5, the refined PBPK model is used for predicting 
PK profiles under various scenarios that have not been studied 
experimentally. In addition, the mean and upper/lower bounda-
ries that reflect variability or uncertainty are simulated.

Four case studies that posed different regulatory ques-
tions regarding the use of PBPK modeling and simulation are 
described in the following sections of this report.

Representative case studies
Case 1. Specific regulatory question: Can PBPK simulations rule 
out CYP2C9 inhibition by drug A, even though the ratio of in 
vivo inhibitor concentration (I: maximum plasma concentration 
at the highest proposed dose) to in vitro inhibition constant (Ki) 
of CYP2C9 (I/Ki) is >0.1?

Synopsis: In vitro drug interaction data indicate that drug A 
is a reversible inhibitor of CYP2C9, with an estimated I/Ki ratio 
of ~2, where I is the maximal plasma concentration of drug A. 
The 2006 draft FDA drug interaction guidance indicates that a 
clinical drug interaction study should be conducted when the 
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Figure 1  Application of physiologically based pharmacokinetic (PBPK) modeling and simulation to evaluate the effect of various extrinsic and intrinsic 
factors on drug exposure and response. (a) Intrinsic and extrinsic patient factors that can affect drug exposure and response (taken from Huang and Temple7). 
(b) Components of PBPK modeling (drug-dependent component and drug-independent (system) component). The figure indicates that the effects of individual 
or combined intrinsic/extrinsic factors on drug exposure are projected via both drug-dependent and drug-independent (system) components of the PBPK 
model. ADME, absorption, distribution, metabolism, and excretion; MOA, mechanism of action; PD, pharmacodynamics; PK, pharmacokinetics.
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I/Ki ratio is >0.1 (ref. 25). The sponsor’s PBPK simulations indi-
cated that because drug A has a short half-life, there would be 
minimal drug interaction with the CYP2C9 substrate warfarin. 
The FDA’s PBPK analysis included metabolites in the model. 
These metabolites have longer half-lives and higher systemic 
exposure than drug A does (e.g., the AUC of one metabolite is 
10-fold higher than that of drug A). The inhibition potential of 
the metabolites is not known. The FDA’s PBPK model used a 
conservative approach, assuming the same inhibition potency 
for metabolites as for the parent drug. The resulting PBPK simu-
lation suggested that coadministration of drug A can inhibit 
CYP2C9 and increase the exposure of warfarin.

Conclusion: PBPK modeling does not rule out the potential 
for drug A to inhibit the metabolism of a CYP2C9 substrate. 
Although PBPK simulation may provide more information than 
the I/Ki ratio, the lack of metabolite inhibition data limited the 
utility of the PBPK simulation in this specific case. The sponsor 
is conducting in vitro inhibition studies of the metabolites and 
will incorporate the data in the PBPK model. If the PBPK model 
that includes actual metabolite inhibition data indicates that 
administration of drug A does not significantly inhibit metabo-
lism of a CYP2C9 substrate, an in vivo interaction study between 
drug A and warfarin may not be needed. However, if the model 
indicates significant inhibition of CYP2C9, a clinical study of the 
interaction between drug A and warfarin is warranted.

Case 2. Specific regulatory question: Can PBPK modeling and 
simulation predict the magnitude of interaction between a strong 
CYP3A inhibitor and a sensitive CYP3A substrate administered 
intravenously, on the basis of the data from an interaction study 
between the inhibitor and the substrate administered orally?

Synopsis: Sildenafil is a sensitive CYP3A substrate that under-
goes significant first-pass metabolism. After oral administration, 
92% of the drug was absorbed with an absolute bioavailability of 
38%.26 It is also metabolized by CYP2C9. Oral administration 
of sildenafil with ritonavir, a strong CYP3A inhibitor, resulted 
in a greater than 10-fold increase in sildenafil AUC. In order to 
predict the magnitude of interaction between ritonavir (or other 
strong CYP3A inhibitors) and sildenafil administered intrave-
nously, the sponsor constructed a PBPK model for sildenafil 
and ritonavir, and conducted simulations for the new admin-
istration route of sildenafil. The results indicated a smaller 
degree of drug interaction (AUC increased by approximately 
threefold) when sildenafil is given intravenously vs. orally. The 
smaller magnitude of interaction with intravenous adminis-
tration as compared with oral administration of sildenafil is 
expected and is consistent with literature data for midazolam, 
another CYP3A-sensitive substrate with significant first-pass 
metabolism. Data in the literature comparing drug interactions 
of midazolam after oral and intravenous administration in the 
presence and absence of a strong CYP3A inhibitor showed a 

Table 1 S ummary of general regulatory questions addressed using PBPK modeling and simulations

Cases
Main enzymatic pathways; interacting drug/ 
substrate relationships Regulatory questions addressed related to PBPK modeling and simulations

1 NME is a CYP inhibitor in vitro (I/Ki > 0.1) Can PBPK simulations predict the magnitude of DDI with a CYP substrate in vivo?

2 NME is a CYP substrate An in vivo DDI study with a CYP inhibitor has been conducted when NME was 
dosed orally. Can PBPK simulation predict the magnitude of DDI when NME is given 
intravenously?

3 NME is a CYP substrate and also renally excreted Can PBPK simulations predict the magnitude of DDI in subjects with varying degrees of 
renal impairment (mild, moderate, or severe)?

4 NME is a CYP inhibitor in vitro (I/Ki > 0.1)
NME is metabolized by multiple CYPs in the liver

Can PBPK simulations predict the magnitude of DDI with a CYP substrate in vivo?
Can PBPK simulations predict the magnitude of DDI with CYP inhibitors?
Can PBPK simulations predict PK in subjects with hepatic impairments?

Others NME is a substrate of a polymorphic CYP in vitro Can PBPK simulations predict the PK in extensive, intermediate, or poor metabolizers of 
this CYP?

NME is a CYP substrate and a DDI study using a  
specific inhibitor dose has been conducted in vivo

Can PBPK simulations predict the magnitude of DDI using a different inhibitor dose as 
recommended by the FDA?

NME is a CYP substrate and an in vivo DDI study  
has been conducted with a CYP inhibitor

Can PBPK simulations predict the magnitude of DDI with a CYP inducer?

NME is a TDI of a CYP Its single-dose PK data are available:
Can PBPK simulations predict dose- and time-dependent PK after multiple dosing?
Can PBPK simulations predict TDI in vivo?

NME is metabolized by multiple CYPs Can PBPK simulation be used to predict fractional metabolism based on enzyme kinetic 
studies in vitro?

NME’s adult PK data are available Can PBPK simulations help determine the optimal doses for pediatric studies?

NME is metabolized in the liver In vivo data are available in hepatically impaired subjects taking lower than 
recommended doses of NME. Can PBPK simulations predict PK of NME in hepatic 
impairment patients taking recommended doses?

NME and its metabolite are both inhibitors of a CYP Can PBPK simulation predict the DDI potential of the NME?

CYP, cytochrome P450; DDI, drug–drug interactions; FDA, US Food and Drug Administration; NME, new molecular entity; PBPK, physiologically based pharmacokinetic; 
PK, pharmacokinetic; TDI, time-dependent inhibitor.
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decreased extent of inhibition after intravenous administra-
tion of the substrate as compared to oral administration of the 
substrate (Table 2).

The FDA’s independent PBPK analysis also indicated that 
the magnitude of the effect of a strong CYP3A inhibitor on 
sildenafil concentrations is smaller when sildenafil is admin-
istered intravenously as compared with when it is adminis-
tered orally (http://www.accessdata.fda.gov/drugsatfda_docs/
nda/2009/022473s000_ClinPharmR.pdf). However, the quanti-
tative effect of ritonavir on intravenously administered sildenafil 
cannot be confirmed because of two potential limitations. First, 
the contribution of CYP3A to the overall clearance of sildena-
fil (fm,CYP3A) cannot be confirmed. In vitro data showed that 
CYP3A and CYP2C9 contributed 80% and 20%, respectively, to 
the formation of UK-103,320, a metabolite of sildenafil. These 
data were used in the sponsor’s PBPK model to represent the 
metabolism of sildenafil. However, several primary metabolites 
including UK-103,320 have been reported in vivo.26 Therefore, 
the in vitro fm values calculated based on UK-103,320 formation 
may not represent the in vivo contribution to sildenafil metabo-
lism by each CYP isoform. Because the magnitude of drug–drug 
interaction is influenced by fm,27 confirmation of fm,CYP3A is 

critical. Second, the PBPK model did not consider concurrent 
induction of CYP3A by ritonavir.28 As the induction of CYP3A 
by multiple doses of ritonavir may offset the strong CYP3A inhi-
bition effect of the drug, accurate prediction of the magnitude 
of the drug–drug interaction between ritonavir and intravenous 
sildenafil would need to consider both induction and inhibition 
in the model. Therefore the magnitude of drug–drug interaction 
may depend on the dosing regimen (e.g., duration of pretreat-
ment) of ritonavir.

Conclusion: On the basis of the PBPK model and the mida-
zolam drug interaction literature, the FDA agreed with the spon-
sor’s conclusion that a smaller degree of drug–drug interaction 
is anticipated between a strong CYP3A inhibitor and sildenafil 
when the latter drug is administered intravenously as compared 
to oral administration. It was therefore found to be acceptable to 
include the following wording in the sildenafil injection prod-
uct label: “Predictions based on a pharmacokinetic model sug-
gest that drug–drug interaction with CYP3A inhibitors will be 
less than those observed after oral sildenafil administration.” 
However, several limitations prevent the use of PBPK modeling 
to determine the quantitative effect of the interaction between 
ritonavir and the sildenafil injection product.

Step 1. Identification and quantification of clearance pathways based on in vitro and
in vivo data: CYP and non-CYP, non-metabolism (e.g., biliary excretion and renal secretion)
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Figure 2  General processes in PBPK modeling and simulations. CYP1 and CYP2 represent two CYP isoforms involved in the metabolism of the new molecular 
entity (NME); CYP, cytochrome P450; Km, Michaelis–Menten constant; Vmax, maximum rate of reaction; [Metabolite] and [Drug], concentrations of metabolite and 
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Case 3. Specific regulatory question: Can PBPK modeling 
and simulation determine the combined effect of multiple 
factors (e.g., moderate renal impairment + moderate enzyme 
inhibitor)?

Synopsis: Rivaroxaban is an orally administered direct fac-
tor Xa inhibitor approved in Europe for the prevention of 
venous thromboembolism in adult patients undergoing elec-
tive hip or knee replacement surgery. The product informa-
tion (SmPC) and public assessment report (EPAR) is available 
on the EMA homepage (http://www.ema.europa.eu/ema/
index.jsp?curl=pages/medicines/human/medicines/000944/
human_med_001155.jsp&murl=menus/medicines/medicines.
jsp&mid=WC0b01ac058001d125). Rivaroxaban is eliminated 
via two major routes: (i) ~36% of the dose is excreted renally 
as unchanged drug, with net secretion (likely mediated by 
P-glycoprotein and/or breast cancer-resistant protein) and 
filtration contributing at a ratio of approximately 5:1 and 
(ii) hepatic metabolism by CYP3A (~18%), CYP2J2 (~14%), 
hydrolysis (~14%), and an uncharacterized pathway (~8%). 
Coadministration of rivaroxaban with ketoconazole or other 
strong CYP3A/P-glycoprotein inhibitors such as ritonavir 
resulted in an increase in rivaroxaban AUC by ~2.5-fold, which 
is considered clinically relevant. However, studies with other 
inhibitors such as erythromycin and clarithromycin reported 
1.3- and 1.5-fold increases in rivaroxaban AUC, respectively; 
these were not deemed clinically relevant. The sponsor con-
sidered erythromycin to be a weak-to-moderate CYP3A4/P-gp 
inhibitor and clarithromycin to be a strong CYP3A4 /weak-to 
moderate P-gp inhibitor in these studies. Further, the PK of 
rivaroxaban was evaluated in subjects with renal impairment, 
as estimated by creatinine clearance (CLCr). As compared 
with the corresponding values in healthy volunteers (CLCr > 
80 ml/min), rivaroxaban AUC values were increased 1.4- to 
1.6-fold in subjects with values of CLCr down to 15 ml/min 
(EMA Review). The EMA review and Summary of Product 

Characteristics noted that rivaroxaban was not recommended 
in patients with severe renal impairment (CLCr < 15 ml/min), 
that the changes in exposure in patients with mild to mod-
erate renal impairment were not deemed clinically relevant, 
and that severe renal impairment with CLCr of 15–29 ml/min 
required that caution be exercised while prescribing the drug 
regimen. It was considered important to address the question 
of whether a combination of factors (e.g., mild to moderate 
renal impairment plus concomitant administration of a mild 
to moderate CYP3A4 inhibitor)—each of which by itself would 
not be deemed clinically relevant—could result in a clinically 
relevant change in rivaroxaban exposure.

To project the extent of drug–drug interaction in patients 
with various degrees of renal impairment and who are on a 
regimen of rivaroxaban with CYP/efflux transporter inhibi-
tors, the reviewers constructed a semi-PBPK model. The utility 
and the associated designs of semi-PBPK models have been 
reviewed elsewhere19,20,29,30 and are not discussed in detail 
here. Confidence in the final model was assessed by visual 
comparison of simulated rivaroxaban plasma concentration-
vs.-time profiles with those observed from clinical studies31 in 
which the drug had been administered in a similar manner.

The semi-PBPK model evaluated drug–drug interaction 
at the organ level (liver and kidney), and the effect of renal 
impairment, using a time-based inhibitor concentration 
model. In addition, the model considered concurrent inhibi-
tion of hepatic CYP enzymes and kidney efflux transporter(s) 
and the possible effect of renal impairment on hepatic enzyme 
activity.32,33 Because the absolute oral bioavailability of rivar-
oxaban is nearly 100% (EMA Review), first-pass metabolism 
and efflux transport in the gut wall were not considered in the 
model.

The effect of erythromycin on the elimination of rivaroxa-
ban was then evaluated. The inhibition of the renal secretion of 
rivaroxaban by efflux transporters and the CYP2J2-mediated 

Table 2 S ummary of PK parameters of midazolam and sildenafil with and without coadministration of CYP3A inhibitors 
(clarithromycin, ketoconazole, ritonavir, saquinavir, or erythromycin)

PK parameters AUCR (± inhibitor)

ReferenceCLiv (L/h) Foral Fg Fh p.o. i.v.

Midazolam 27.8 0.31 0.42 0.74 — — Gorski42, 1998a

Midazolam+clarithromycin 10.1 0.75 0.83 0.90 7.0 2.7 Gorski42, 1998

Midazolam+ketoconazole (200 mg) — — — — 11.0 3.4 Lucksiri43, 2005b

Midazolam+ketoconazole (400 mg) — — — — 15.0 4.2 Lucksiri43, 2005

Sildenafil 40.8 0.38 0.69 0.55 — — Muirhead26, 2002ac

Sildenafil+ritonavir — — — — 11 — Muirhead44, 2000d

Sildenafil+saquinavir — — — — 3.1 — Muirhead45, 2000

Sildenafil+erythromycin — — — — 2.6 — Muirhead45, 2002be

AUCR: AUC ratio = AUCwith inhibitor/AUCwithout inhibitor.

Fg, bioavailability in the gut; Fh, bioavailability in the liver; Foral, oral bioavailability.
aGorski 1998: i.v. and p.o. midazolam was given before and on day 7 of oral clarithromycin (500 mg b.i.d. day 1–7). bLucksiri 2005: i.v. and p.o. midazolam was given before 
and during 7-day oral ketoconazole (200 or 400 mg q.d., i.v. midazolam on day 6, p.o. midazolam on day 7). cMuirhead 2002(a): i.v. sildenafil 25 mg; p.o. sildenafil 50 mg. Blood 
pharmacokinetic parameters were calculated. Complete absorption and predominant liver metabolism after i.v. administration were assumed. dMuirhead, 2000: p.o. sildenafil 
before and on day 6/7 of b.i.d. oral ritonavir (300 mg b.i.d. on day 1, 400 mg b.i.d. on day 2, and 500 mg b.i.d. on days 3–7), or p.o. sildenafil before and on day 6/7 of oral saquinavir 
(1,200 mg t.i.d.). eMuirhead, 2002(b): p.o. sildenafil before and on day 5 of b.i.d. oral erythromycin (500 mg).
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elimination pathway were assumed to be reversible, whereas 
inhibition of CYP3A4 was assumed to be time-dependent 
(or irreversible inhibition in the presence of erythromycin, 
http://www.druginteractioninfo.org, accessed July 2010). 
Next, using the semi-PBPK model, the reviewers assessed the 
effect of coadministration of erythromycin along with rivar-
oxaban in subjects with renal impairment.

The model predicted that, as renal function decreased by 
0% (no impairment), 25%, 50%, 75%, and 90%, the rivaroxa-
ban exposure (AUC) in the presence of erythromycin would 
increase by 1.2-, 1.5-, 2.0-, 3.0-, and 4.1-fold, respectively, as 
compared with rivaroxaban exposure in subjects with normal 
renal function in the absence of erythromycin. Therefore, these 
preliminary findings suggest the possibility that a moderate 
CYP3A4 inhibitor (such as erythromycin) that by itself might 
increase rivaroxaban by only ~1.2 fold could result in a twofold 
or more increase in rivaroxaban exposure in subjects with mild 
to moderate renal impairment. Additional simulations (data 
not shown) suggested that altered plasma protein binding of 
rivaroxaban in patients with impaired renal function may also 
impact the prediction of the exposure change.

Conclusion: The FDA reviewers concluded that several mech-
anisms needed to be incorporated into the PBPK model in order 
to adequately evaluate the magnitude of in vivo drug–drug 
interactions in subjects with renal impairment. Furthermore, in 
their briefing document to the Cardiovascular and Renal Drugs 
Advisory Committee (19 March 2009), the FDA reviewers indi-
cated that, in view of the notable dual pathway of elimination of 
rivaroxaban, “The potential effect of concurrent renal impair-
ment and the use of a moderate/strong CYP3A4 inhibitor on 
rivaroxaban exposure is of particular concern, given [that] 
this interaction can result in an increased exposure greater 
than the sum of its parts, and this interaction was not evalu-
ated or modeled by the applicant” (http://www.fda.gov/down-
loads/AdvisoryCommittees/CommitteesMeetingMaterials/
Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/
UCM181524.pdf).

This analysis also supports the EMA’s cautionary language 
regarding the potential for multiple impairments in its product 
information for rivaroxaban. This approach may also provide 
additional context for the regulatory question of whether a 
dedicated clinical study to quantify the PK and pharmacody-
namic effects should be considered so that the dose may be 
optimized for this scenario. 

Case 4. Specific regulatory questions: Can PBPK modeling 
and simulation indicate whether in vivo interaction studies are 
needed for a drug that is a CYP3A inhibitor in vitro? Can PBPK 
modeling and simulation indicate whether in vivo interaction 
and organ impairment studies are needed for a drug that is a 
CYP3A substrate?

Synopsis: Intended for intravenous infusion, cabazitaxel 
is predominantly metabolized in vivo by CYP3A isoen-
zymes (http://www.accessdata.fda.gov/drugsatfda_docs/
nda/2010/201023s000ClinPharmR.pdf). Cabazitaxel also 
inhibits CYP3A in vitro with an I/Ki ratio of > 0.1. The review-
ers constructed a PBPK model for cabazitaxel on the basis of 

in vitro and in vivo metabolism data and in vivo PK parameters. 
The model was used to predict the outcome of the following 
scenarios that lacked in vivo data:

I.	 In vivo drug–drug interaction with a CYP3A substrate, 
midazolam

II.	 In vivo drug–drug interaction with a CYP3A inhibitor, 
ketoconazole

III.	In vivo drug–drug interaction with a CYP3A inducer, 
rifampin

IV.	PK of cabazitaxel in patients with various degrees of hepatic 
impairment

With this model, the simulated PK profile for cabazitaxel was 
comparable to the observed in vivo PK data. For scenario I, 
although I/Ki is > 0.1, the model predicted minimal drug–drug 
interactions when cabazitaxel and midazolam were coadmin-
istered, possibly because of the rapid disappearance of cabazi-
taxel in plasma during the distribution phase, its relatively high 
plasma protein binding, and the absence of inhibition of gut 
metabolism, as cabazitaxel is administered intravenously. The 
FDA reviewers also conducted a sensitivity analysis that incor-
porated a several-fold higher I/Ki ratio, in order to confirm the 
absence of CYP3A inhibition by cabazitaxel in vivo (Midazolam 
AUC ratio with and without inhibitor <1.1). For scenarios II 
and III, the PBPK model indicated that a drug–drug interaction 
was possible (i.e., the estimated ratio of cabazitaxel AUC with 
the inhibitor ketoconazole to that without was 2.2, and the cor-
responding ratio for the inducer rifampin was 0.6). For scenario 
IV, the PBPK model predicted higher increases in cabazitaxel 
exposure with higher degrees of hepatic impairment (the AUC 
is 2.5-fold higher in subjects with a Child-Pugh score of C as 
compared with healthy subjects).

Conclusion: The PBPK simulations indicate that an in vivo 
drug–drug interaction study with midazolam as a substrate is 
not required, even though cabazitaxel has an I/Ki > 0.1. The 
simulations confirmed the need to conduct in vivo drug–drug 
interaction studies with CYP3A inhibitor(s) and inducer(s). The 
simulations assisted the design of a PK study in hepatic impair-
ment by supporting the use of a lower dose of cabazitaxel in 
patients with severe hepatic impairment in the planned hepatic 
impairment study.

Discussion
The improvement in our understanding of human physiology and 
biochemistry, drug ADME, and mechanism of action; the availa-
bility of tools that allow us to model nonclinical and clinical phar-
macology data; and the advancement of information technology 
have made it possible for us to utilize a systems-biology approach 
such as PBPK modeling to evaluate drug exposure changes due to 
individual patients’ intrinsic and/or extrinsic factors (Figure 1). In 
this report, we present our regulatory experience in using PBPK 
modeling and simulations in addressing clinical pharmacology 
questions. The experience indicates that knowledge regarding 
both the system component and the drug-dependent component 
are essential in constructing an appropriate PBPK model.
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The four cases presented in this article describe the potential 
advantages of PBPK models over traditional models (e.g., com-
partmental models). PBPK models incorporate all available, rel-
evant PK and physiology information, allowing the models to 

predict the effect of multiple factors on the drug concentration–
time profile. The fact that these models are based on physiology 
helps scientists who are not clinical pharmacologists to under-
stand the modeling results and incorporate them in drug devel-
opment decisions. PBPK provides a more realistic prediction of 
the potential for drug–drug interactions than the static approach 
(such as the use of I/Ki) that has traditionally been used. The 
PBPK-based drug–drug interaction predictions are more realis-
tic because they consider multiple factors and mechanisms that 
impact the interactions.16–21 

As depicted in Figure 2, characterization and quantitative 
determination of elimination pathways of a drug and its metabo-
lites is an important first step when conducting PBPK modeling 
and simulations. Based on our review of the submissions con-
taining PBPK simulations, we noted that the lack of necessary 
information regarding clearance pathways has often hampered 
the proper use of the PBPK approaches. Without a thorough 
understanding of the ADME processes for an individual drug, it 
is difficult to quantify the effect of intrinsic and extrinsic factors 
on the PK of the drug. In order to appropriately characterize and 
quantify the contribution of specific enzymes and/or transport-
ers to the overall disposition, several in vitro and in vivo studies 
appear to be indispensible under the current drug development 
paradigm (Table 3).

Figure 3 summarizes a general scheme to incorporate drug-
dependent parameters into a PBPK model. Physicochemical 
parameters such as LogP, pKa, and polar surface area (experi-
mentally determined or calculated based on chemical structure 
using in silico models) can be used to calculate tissue partitioning 
characteristics.34–38 These parameters are also used when esti-
mating microsomal protein binding and effective permeability 
that are not experimentally determined. In vitro metabolism and 
enzyme inhibition/induction parameters that are intended to 
describe drug clearance and drug–drug interaction mechanisms 
are experimentally determined and incorporated as input into 
PBPK models. A subsequent important step is the integration of 
in vivo knowledge to refine the PBPK model and to qualify the 
PBPK model by comparing the simulated PK profiles with those 

In vitro human ADME and
MOA data

In vivo human PK data
(compartmental or PopPK)

PK–PD relationship

PK of metabolite(s)

Elimination: CL, CLr

Distribution: V

Absorption and first
pass metabolism:

F = FaFgFh, Ka

Physicochemical: LogP, pKa

Parameter input to
build PBPK model

Model
refinement

PBPK/PD model

Conduct simulations to project
plasma/tissue levels of parent drug

and/or metabolites

Distribution: B/P, Kp, Kd, fu,p

Absorption: Peff

Metabolism and transport:
Km, Vmax, Jmax, CLint

DDI: ki, kinact, KI, induction
(EC50, Emax, and γ)

MOA: EC50, Emax, IC50, Imax

Figure 3  General scheme to incorporate drug-dependent parameters 
into a PBPK model. ADME, absorption, distribution, metabolism, and 
excretion (although “absorption” in this figure refers specifically to the 
passive processes of drug entry into systemic circulation, parameters such 
as jejunum permeability (Peff), measurable in vitro, may be affected by active 
processes by transporters, and an array of factors influencing drug absorption 
have been reviewed by Jamei et al.12); AUC, area under the concentration-
vs.-time curve; B/P, blood to plasma ratio; Cmax, maximum concentration; 
CL, clearance; CLint, intrinsic clearance; CLr, renal clearance; DDI, drug–drug 
interactions; EC50 or IC50, concentration causing half of the maximal effect 
of induction or inhibition; Emax or Imax, maximum effect of induction or 
inhibition; F, bioavailability; Fa, fraction absorbed; Fg, bioavailability in the 
gut; Fh, bioavailability in the liver; fu,p, unbound fraction in plasma; γ, Hill 
coefficient; Jmax, maximum rate of transporter-mediated efflux/uptake; Ka, 
first-order absorption rate constant; Kd, dissociation constant of drug–protein 
complex; Ki, reversible inhibition constant; KI, apparent inactivation constant, 
concentration causing half of the maximal inactivation; kinact, apparent 
maximum inactivation rate constant; Km, Michaelis–Menten constant, 
substrate concentration causing half of the maximal reaction or transport; Kp, 
tissue-to-plasma partition coefficient; LogP, logarithm of the octanol–water 
partition coefficient; MOA, mechanism of action; PD, pharmacodynamics; 
Peff, jejunum permeability; PK, pharmacokinetics; PopPK, population 
pharmacokinetics; V, volume of distribution; Vmax, maximum rate of 
metabolite formation.

Table 3.  Important parameters needed for comprehensive evaluation of complex drug interactions

Type of study Parameters estimated

In vitro ADME and interaction Enzyme/transporter involved in elimination and interaction
Drug distribution (e.g., fu,p and B/P)
Interaction mechanisms and parameters (e.g. Ki)
Initial fm estimation

Phase I dose escalation (oral administration) CL/Foral
V/Foral
Likely fe, CLr and metabolite data

Absolute oral bioavailability CL
V
Likely CLr and metabolite data
Foral

In vivo mass balance (e.g., studies in humans using radiolabeled material) Confirm fm
Confirm fa
Confirm fe, CLr

B/P, blood to plasma ratio; CL, clearance; CLr, renal clearance; Fa, fraction absorbed; fe, fraction of the dose excreted unchanged in the urine; Foral, oral bioavailability; fu,p, unbound 
fraction in plasma; Ki, reversible inhibition constant.; V, volume of distribution.

Modified from Zhao et al.21
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from available in vivo studies. For example, in order to carry out 
simultaneous evaluation of autoinhibition and multiple-dose 
effect on drug pharmacokinetics, one sponsor constructed the 
initial PBPK model using in vitro enzyme inhibition data and 
subsequently obtained PK parameters from phase 1 single-dose 
data to refine the enzyme kinetic parameters. Similar techniques 
were employed by reviewers when separately constructing PBPK 
models during the review process, using a variety of tools (see 
Methods).

During earlier stages of drug development, comprehensive 
drug-dependent parameters may not be available and the con-
struction of a PBPK model relies largely on in vitro and in silico 
data. These initial models can be used to address certain regu-
latory questions in a qualitative manner as well as in candidate 
selection or optimization of clinical study designs. As the com-
pound progresses to later stages of drug development, PBPK 
models could be iteratively refined to incorporate additional 
quantitative information on drug disposition from available 
in vivo studies. An adequately constructed PBPK model can play 
a critical role in designing clinical pharmacology studies by pro-
jecting drug PK profiles under various scenarios. It can also help 
in determining whether there is a need for additional studies, 
including postmarketing requirement or commitment studies, 
as part of risk–benefit assessment of new molecular entities.

This report focuses primarily on the utility of PBPK in assess-
ing the mean drug exposure changes caused by intrinsic and/
or extrinsic factors. Besides their deterministic features, pop-
ulation-based PBPK models can provide information related 
to variability and uncertainty of the PK profiles in patient 
subgroups.39

Despite the progress in the development of population-based 
PBPK modeling tools and their increased utility in pharma-
ceutical research, drug development, and regulatory review, 
quantitative prediction of certain clinical pharmacology sce-
narios is not possible because of several knowledge gaps. These 
gaps reside in both drug-independent (system-) and drug-
dependent components. Like other modeling and simulation 
exercises, the use of PBPK is associated with various assump-
tions, which may vary depending on the stage of drug develop-
ment and the regulatory questions to be addressed. One major 
knowledge gap is our insufficient understanding of develop-
mental-related, disease-related, and organ dysfunction-related 
changes in human physiology. For example, knowledge regard-
ing how renal impairment quantitatively affects the activities of 
individual metabolizing enzymes or transporters is critical in 
the construction of a PBPK model to assess the extent of drug 
interactions in patients with varying degrees of renal impair-
ment. Similarly, we need an improved understanding of the 
effects of age on drug-metabolizing enzymes and transport-
ers and renal function in both pediatric and geriatric popula-
tions. In addition, adequate characterization of the clearance 
pathways for drugs and their metabolites, and of the effects 
(induction and inhibition of specific enzymes and transport-
ers) of interacting drugs is required. Besides the necessity to 
bridge these knowledge gaps, there is also a need for contin-
ued research to formulate and refine best practices in the use 

of PBPK approaches during drug development and regula-
tory review.40,41 At the FDA, efforts have been undertaken to 
streamline the process of using PBPK during regulatory review, 
including criteria for conducting separate confirmatory PBPK 
modeling and simulations when reviewing PBPK data submit-
ted by the sponsors.

In summary, between July 2008 and June 2010, the Office 
of Clinical Pharmacology at CDER, FDA, reviewed submis-
sions for approval of INDs and NDAs that incorporated PBPK 
simulations. In this report, we summarize general schemes of 
PBPK simulation and propose procedures to obtain necessary 
data to construct PBPK models. In order to fully utilize PBPK 
in drug development and regulatory review, it is critical to 
adequately define mechanisms of drug disposition and under-
stand general physiological perturbations related to diseases, 
age, and organ dysfunction.

Methods
The Office of Clinical Pharmacology at the FDA has reviewed numerous 
submissions for approval of INDs and NDAs that included the use of 
PBPK modeling and simulations. Additional modeling and simulations 
were conducted by the FDA clinical pharmacology reviewers using a vari-
ety of software products. For example, when estimation of PK parameters 
using compartmental analysis was needed, mean concentration-vs.-time 
profiles (PK profiles) were digitized using GetData software (version 2.24, 
http://getdata-graph-digitizer.com). PK parameters were estimated by 
means of compartmental analyses using WinNonlin (version 5.2, Phar-
sight, Cary, NC). In other instances, PK of metabolites was considered 
important. Parameters for metabolites were obtained by fixing PK param-
eters of the parent drug in a model that incorporates metabolism. In 
one case, the values for volume of distribution, formation clearance, and 
elimination clearance of metabolites were estimated using NONMEM 
software or by manually adjusting the parameters in a PBPK simulator. 
PBPK simulators used in the submissions by sponsors and in the FDA 
reviews include Simcyp (Sheffield, UK), PK-Sim (Bayer Technologies, 
Leverkusen, Germany), and Gastroplus (Simulation Plus, Lancaster, CA). 
Other in-house PBPK models were developed using software such as 
SAAMII (University of Washington, Seattle, WA).
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